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Abstract Predictive modeling is a statistical data mining approach that builds a
prediction function from the observed data. The function is then used to estimate a
value of a dependent variable for new data. A commonly used predictive modeling
method is regression that has been applied to a wide range of application domains.
In this paper, we build multivariate regression models of home prices using a dataset
composed of 81 homes. We then applied the maximum information coefficient
(MIC) statistics to the observed home values (Y ) and the predicted values (X) as
an evaluation of the regression models. The results showed very high strength of the
relationship between the two variables X and Y .

Key words: Predictive modeling, multivariate linear regression, hedonic price
model, maximum information coefficient.

1 Introduction

Predictive modeling is a very commonly used method for estimating (or predicting)
the outcome of an input data based on the knowledge obtained from a previous
data set. It is to build a model (i.e. function f ) from an observed data set D such
that the model will predict the outcome of a new input x as f (x) with the best
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probability. The domain of x is a set of predictors or independent variables, while
the outcome is a dependent variable. Various methods have been developed for
predictive modeling, among them, multivariate linear regression is perhaps one
of the most commonly used and relatively easy to build. The multivariate linear
regression model is to express the dependent variable y as a linear function of p
predictor variables xi (i = 1, . . . , p) and an error term ε:

y = c0 + c1x1 + · · ·+ cpxp + ε

Note that if the the relationship between the dependent variable and the predictor
variables is non-linear, we can create new variables for the non-linear terms and the
regression model. For example, we can have

y = c0 + c1x1 + c2z2 + c3z3 + ε

where z2 = x2
2 and z3 = lnx3. The linearity is actually between the dependent variable

y and the coefficients ci.
For a set of n data observations x, the linear regression model can be expressed

in matrix form:
y = cX+ e

The model is estimated by the least square measure that yields the coefficients c
such that the predicted value

ŷ = cX

has the minimal sum of the squares of the errors e = |y− ŷ|.
Predictive modeling has been widely used in many application areas, from

business, economy, to social and natural sciences. In this paper, we apply multi-
variate linear regression to a specific economics application — estimating values of
residential homes. This is not a new problem, neither is the regression method for
solving the problem. The novel idea presented in this paper is to use the maximum
information coefficient (MIC) [12], which is a new statistical measure published just
a few months ago, to evaluate the regression models created. The MIC scores of the
data set we used for the experiment showed that the regression models do have a
very strong relationship with the observed home values. At the time of writing this
paper, we are not aware of any published work using MIC as an evaluation measure
for predictive models.

2 Estimate of Home Values

Home values are influenced by many factors. Basically, there are two major aspects:

• The environmental information, including location, local economy, school
district, air quality, etc.



• The characteristics information of the property, such as lot size, house size and
age, number of rooms, heating / AC systems, garage, and so on.

When people consider buying homes, usually the location has been constrained
to a certain area such as not too far from the work place. With location factor pretty
much fixed, the property characteristics information weights more in the home
prices. There are many factors describing the condition of a house, and they do not
weigh equally in determining the home value. In this paper, we present a modeling
process for estimating home values using multivariate linear regression model based
on the condition information of the dwellings in order to examine the key factors
effecting their values. We also provide a general idea of figuring out if a transaction
is a good deal based on the information provided.

Studies on home prices have been going on for many years using various models.
The traditional and standard model is the hedonic pricing model that says the prices
of goods are directly influenced by external or environmental factors in addition
to the characteristics of the goods. For housing market analysis, the hedonic price
model [9] infers that the price of dwellings is determined by the internal factors
(characteristics of the property) as well as external attributes. The method used in
this model is hedonic regression that considers various combinations of internal
and external predictors [1, 4, 13]. The predictors may be first-order or higher order
(such as Area2) so that the hedonic regression may be a polynomial function of the
predictors [2, 7].

The regression method used in our work is in fact a variation of hedonic
regression, except that we did not consider external factors in our modeling (the
data set does not include such information). We did, however, consider different
combinations of first-order and second-order attributes in the regression model. The
attributes are given in Table 1, where Value is the dependent variable to be predicted,
and the other are predictors including 11 first-order and 4 second-order variables.
The given data set contains 81 homes.

3 Building of Regression Model

3.1 Best Subsets Procedure

Since there are quite a few attributes of home condition, best subsets analysis [8]
was first performed to select the best indicators to build the appropriate model. This
procedure finds best models with 1, 2, 3, and up to all n variables based on the χ2

statistics. The Minitab output of the analysis is shown in Table 2.
Based on the rule that second order indicators cannot exist without first order

indicators, the impossible models were marked out in gray shade and would not be
considered for the further analysis. Three potential cases were selected based on the
highest R-sq(adj), lowest Mallows Cp, and smallest S. These three cases are colored
in Table 2.



Table 1 Attributes of a House

Variable Description

Dependent Value Assessed home value
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first-order

Acreage Area of lot in acres
Stories Number of stories
Area Area in square footage
Exterior Exterior condition, 1 = good / excellent, 0 = average / below
NatGes 1 = natural gas heating system, 0 = other heating system
Rooms Total number of rooms
Bedrooms Number of bedrooms
FullBath Number of full bathrooms
HalfBath Number of half bathrooms
Fireplace 1 = with, 0 = without
Garage 1 = with, 0 = without

second-order

Area**2 House area squared
Acreage**2 Lot size squared
Stories**2 Number of stories squared
Rooms**2 Number of rooms squared

Table 2 Best subsets analysis of the variables
(Shaded rows are impossible and ignored. Rows in color are selected for modeling)
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1 58.8 58.3 162.9 54006 X
1 58.5 58.0 164.7 54211 X
2 74.5 73.9 73.4 42748 X X
2 71.8 71.1 88.9 44929 X X
3 80.2 79.5 42.2 37902 X X X
3 79.9 79.1 44.3 38251 X X X
4 82.5 81.6 30.6 35842 X X X X
4 82.2 81.3 32.4 36143 X X X X
5 84.3 83.2 22.5 34226 X X X X X
5 84.2 83.1 23.1 34352 X X X X X
6 85.3 84.1 18.4 33303 X X X X X X
6 85.2 84.0 19.1 36433 X X X X X X
7 86.2 84.8 15.6 32572 X X X X X X X
7 86.1 84.8 16.0 32647 X X X X X X X
8 87.1 85.7 11.9 31604 X X X X X X X X
8 87.0 85.6 12.6 31763 X X X X X X X X
9 87.8 86.3 9.9 30964 X X X X X X X X X
9 87.8 86.3 9.9 30965 X X X X X X X X X
10 88.7 87.1 6.8 30050 X X X X X X X X X X
10 88.6 87.0 7.2 30130 X X X X X X X X X X
11 88.8 87.0 8.4 30172 X X X X X X X X X X X
11 88.7 86.9 8.7 30230 X X X X X X X X X X X
12 88.8 86.8 10.3 30361 X X X X X X X X X X X X
12 88.8 86.8 10.3 30372 X X X X X X X X X X X X
13 88.8 86.6 12.1 30550 X X X X X X X X X X X X X
13 88.8 86.6 12.2 30573 X X X X X X X X X X X X X
14 88.8 86.5 14.0 30767 X X X X X X X X X X X X X X
14 88.8 86.5 14.0 30768 X X X X X X X X X X X X X X
15 88.8 86.3 16.0 30992 X X X X X X X X X X X X X X X



3.2 Regression model

Based on the Best Subsets analysis results, three regression models were built for
the three selected cases:

V̂1 = −104582+45216Acreage+36542Stories+67.4Area+12242FullBath

+16428Hal f Bath+30480Garage−4397Acreage2 (M-1)

V̂2 = −101097+21512Acreage+38141Stories+71.2Area+18580Exterior

+12218FullBath+14569Hal f Bath+23999Garage (M-2)

V̂3 = −111721+42939Acreage+38965Stories+72.3Area+18901Exterior

−6781Rooms+12139Bedrooms+9721FullBath+21047Hal f Bath

+24095Garage−3919Acreage2 (M-3)

Notice that the third model (M-3) has fewer variables than as indicated in
the row Vars=14 of Table 2. This is because several non-significant indicators
were removed (in the order of first removing least significant and second-order
indicators).

The residuals versus fits plots for the three models are shown in Fig. 1, Fig. 2 and
Fig. 3, respectively.
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Fig. 1 Residuals versus fits plot of Model (M-1)

The figures show a fan-shaped pattern indicating that the diagnosis analysis
revealed non-constant residual variances (residual error is not normally distributed),
which is unacceptable. To alleviate the heterogeneity in the residual errors, a Box-
Cox transform is applied to the dependent variable Value.
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Fig. 2 Residuals versus fits plot of Model (M-2)
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Fig. 3 Residuals versus fits plot of Model (M-3)

3.3 Box-Cox Transform

The Box-Cox procedure [3] provides a suggestion of the transformation on y:

yλ =

{
(yλ −1)/λ if λ 6= 0
logλ if λ = 0

After the transformation, the Box-Cox plot (λ versus standard deviation) is shown
in Fig. 4.

From the plot, λ = 0, so the transformation on Y (Value) is

Value∗ = log(Value)
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Fig. 4 The Box-cox analysis of Y (Value)

3.4 Redo Best Subsets Analysis

The Best Subsets analysis was restarted using the transformed Y value. This time,
the best candidate model (with the highest R-sq(adj), lowest Mallows Cp and
smallest S) is selected.

3.5 Rebuild the Linear Regression Model

Applying the regression procedure, we got the new model for Value∗ which is
log(Value). Using V̂4 for the estimated Value, the model is expressed as

log(V̂4) = 9.99+0.311Acreage+0.151Stories+0.000305Area

+0.126Exterior+0.115Rooms+0.0556FullBath

+0.0816Hal f Bath+0.163Garage−0.0387Acreage2

−0.00548Rooms2 (M-4)

3.6 Diagnostics of the New Model

From the result, we see that all the p-values are smaller than 0.05, which means all
the predictors in the model are significant. So the next step would be the residual
diagnostics. The residuals versus fits plot is shown as Fig. 5. And this time the plot
is more close to random scatter plot.
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Fig. 5 Residuals versus fits plot of Model (M-4)

Finally, the Durbin-Watson test [5, 6] was used to test the autocorrelation
between residuals. The Durbin-Watson value is 1.65277. Checking it against the
critical values for n = 81,k = 11 from the Durbin-Watson table:

α = 0.05,dL = 1.37434,dU = 1.92282

we see that dL < 1.65277 < dU , so the test is inconclusive meaning that there is no
enough evidence to conclude whether there is a positive autocorrelation. However,
the autocorrelation problem is not necessarily of a high concern because 1.65277 >
1. Since 4−1.65277 = 2.34723 > dU , there is no negative autocorrelation between
residuals.

3.7 Discussion of the Results

From the above model diagnostics, we could conclude that all the predictors in
the model are significant and there is no problem from the residual examinations.
So it is a valid model. Since this is the one with the best results from the Best
Subsets procedure, this model is confirmed as the final model of the linear regression
analysis.

Except for the intercept predictor, there are ten predictors in the model. NatGas,
Fireplace and Bedrooms are not in this model, which means that whether the heating
system is using natural gas, whether there is a fireplace or not, and the number of
bedrooms are not key factors influencing the home values. Furthermore, it appears
(from this small data set), the predictor Area with a very small coefficient doesn’t
seem to have significant influence on home value. All the other predictors, especially
Acreage, show a strong influence on the home values. So to conclude, the home
values are closed related to lot size, number of stories, the exterior condition, number



of total rooms, number of full and half bathrooms, and with or without garages. Area
also affects the home price but to a very limited degree.

However, we should also be aware that this is a simplified model from a
small sample and we only considered the home condition information here. A
more reliable analysis should include external and environmental factors such as
geographic area, air quality, etc. as the hedonic price model suggested.

4 Model Evaluation using MIC

With these regression models established for predicting home values, it is often
desirable to evaluate the goodness of the models. Of course, one way is to apply the
models to additional data in similar home markets to see if the models generate
satisfactory prediction accuracy. Since we do not have additional data for such
goodness testing, we used a different approach for this purpose that relies on a
statistic measure, called maximal information coefficient (MIC), to evaluate the
relationship between the predicted values and the observed home values.

4.1 Maximum Information Coefficient

MIC was introduced very recently [12] as a new exploratory data analysis indicator
that measures the strength of relationship between two variables. This measure is
a statistic score between 0 and 1. It captures a wide range of relationships and
is not limited to specific function types (such as linear as Pearson correlation
does). A comprehensive companion article [11] provides detailed description of the
theory and experimental results, as well as comparisons of MIC with other statistic
measures. It shows that MIC gives similar scores to equally noisy relationships of
different types. For example, the MIC scores for all the linear, cubic, exponential,
sinusoidal, periodic/linear, parabolic relationships are 1, and for total random
relationship is 0.

The basic idea of MIC is to compute mutual information on each cell of all grids
on the x-y scatterplot up to the maximal grid resolution depending on the sample
size. A characteristic matrix M = (mx,y) is defined where each entry mx,y is the
highest normalized mutual information of any x-by-y grid. MIC = max(mx,y) over
(x,y) pairs such that xy < B, where B = nα is the bound of grid size, n is the sample
size (number of data points) and α is a parameter controlling the grid size. The MIC
implementation described in [11] uses α = 0.6 as the default value.



4.2 Model evaluation using MIC

We applied MIC to the linear regression models generated for our study on the home
value data, along with the relationships between the home value and each of the 15
variables (11 first order and 4 second order variables). That is, we treated each of the
models as a new “variable” for the purpose of calculating MIC scores. The results
are given in Table 3.

Table 3 MIC results of the relationship between home value (Y ) and the predictor variables (X)

Y X MIC (strength) Linear regression (p)

Value

V̂2 0.9319 0.9315

V̂3 0.9258 0.9399

V̂1 0.8562 0.9306

V̂4 0.7484 0.5963

log(Value) log(V̂4) 0.7484 0.7927

Value

Area 0.5939 0.7668

Area**2 0.5939 0.7648

Acreage 0.5597 0.6078

Acreage**2 0.5597 0.5312

FullBath 0.5178 0.6216

Rooms 0.4852 0.6267

Rooms**2 0.4852 0.5748

Fireplace 0.4476 0.5497

HalfBath 0.3730 0.4386

Bedrooms 0.3333 0.5806

Value

Exterior 0.3002 0.1242

Natgas 0.2560 0.1481

Stories 0.2036 0.2536

Stories**2 0.2036 0.2505

Garage 0.1900 0.1962

In this table, the MIC scores were computed for pairs of (X ,Y ) variables, where
X is a model or predictor and Y is home Value. We divide these variables into
three sections as shown in Table 3. The first part are the variables V̂i, i = 1,2,3,4,
representing the predicted values from the regression models. The middle part are
ten variables with MIC score higher than the critical value (0.31677) at p = 0.05 for
sample size n = 80. The table of critical values is given in [10]. The bottom section
are those variables with MIC below the critical value. We also included the linear
regression p-value showing the linearity of the X and Y variables (note: this is linear
regression on (X ,Y ), not the linear regression we used to build the models).

From the results, we have the following observations.



(1) It was expected the regression models V̂i would produce strong relationships
with the home value, and this was confirmed with the MIC measures that are
quite high (about 0.75 to 0.93).

(2) The high MIC scores along with the high linear regression p-values given in
Table 3 imply that the models indeed are good estimates of the home values.

(3) The MIC scores of the models V̂i are much higher than the scores of each
individual variable. The lowest score (0.7484) for model V̂4 is 26% higher than
the highest score (0.5939) for the individual variable (Area), indicating that the
regression models for estimating home value are much reliable than individual
variables, even though some of the individual variables do have strong influence
on the home value on their own.

(4) For a pair of first-order and second-order variables (such as Acreage and
Acreage**2), the linear regression p-value of (Value, Acreage) is 0.6078 while
the p-value of (Value, Acreage**2) is 0.5312, indicating that linear regression
approach does not fully capture the functional relationship between a first-order
variable X and its second-order version X2. In contrast, MIC yields identical
score because one variable is simply a square function of the other so that
the strength of the relationship between home value and X is the same as that
between home value and X2.

(5) The MIC scores for the two versions of our final model log(V̂4) and V̂4 are the
same, while the linear regression p-value of (home Value, log(V̂4)) is much
higher than the p-value of (home Value, V̂4). This shows that the Box-Cox
transform was helpful for removing the non-Gaussian problem in the residual
errors, and that MIC is a better indicator of non-linear relationships between
(Value, Y ).

(6) The final model log(V̂4) (or V̂4) we obtained from the analysis (went through
diagnosis and transformation) has noticeably weaker relationship with home
value than the initial three models V̂1,V̂2,V̂3. It is unclear at this time what is the
cause of such phenomenon. It may well be due to the small sample size or some
other factors that we will explore.

4.3 MIC as a Variable Selection Tool

It light of the power of MIC for detecting the relationship between two variables, it
is possible to use MIC as a measure for selecting the “best subset” of predictors for
building the regression model. The idea is to use the m predictors Xi in the middle
tier of Table 3, for which the MIC scores are higher than the critical value. Select
incrementally the set of variables {X1}, {X1,X2}, . . . ,{X1, · · · ,Xm}where X1 has the
highest MIC score. A regression model V̂j is built using each set of the variables,
and compare the MIC scores of (Value, V̂j). At the time of writing this paper, we
have applied the idea to the 7 first-order variables to build a regression model V̂5
and all 10 first-order and second-order variables for V̂6. The result is given in Table
4.



Table 4 MIC result of home value (Y ) and V̂5,V̂6 (X)

Y X MIC (strength) Linear regression (p)

Value V̂5 0.8296 0.9133

Value V̂6 0.7861 0.8776

It shows that the regression models V̂5 and V̂6 built with the predictors selected
based on MIC are similar to the models using the original Best Subset procedure.

5 Conclusion

Multivariate regression has been widely used for years applying to almost all the
areas in our lives. In this paper, we presented a process of building a multivariate
regression model for a simplified problem of estimating housing prices. This process
involves five steps: (a) apply the Best Subsets procedure to select the variables; (b)
build linear regression models from the selected variables; (c) conduct diagnostics to
find if the residual errors are normally distributed; (d) apply Box-Cox transformation
to fix the non-Gaussian residual problem found in the diagnosis; and (e) restart the
analysis to build the final model. This is a typical process of building regression
models that may apply to many applications where predictive modeling is the goal.

For model evaluation, rather than testing the model against new data sets
with known target values to find the experimental accuracy, we used the newly
introduced statistic measure, maximum information coefficient, to find the strength
of the relationship between the model and the target value. The test we conducted,
although for a small data sample, revealed that the MIC measure may be a viable
metric for evaluation of the models built. MIC may also be used for variable
selection. We are currently exploring ways of using MIC as a tool for model
building.
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